OPPORTUNITIES IN BONE AND JOINT THERAPY IN THE MIRROR OF RADIOPHARMACEUTICALS

Környei J, Antalffy M, Baranyai L

Institute of Isotopes Co. Ltd., Budapest, Hungary

For the treatment of painful bone metastases by beta-emitters, eight different radionuclides such as ^{32}P , ^{89}Sr , ^{90}Y , $^{117\text{m}}\text{Sn}$, ^{153}Sm , ^{177}Lu , ^{186}Re and ^{188}Re can be taken into consideration. Beside the long-lived ^{89}Sr , phosphonate complexes of radionuclides with relatively short half-life are also of high importance concerning the clinical routine. Among the complexing agents, EDTMP (ethylene diamine tetramethylene phosphonate) provides the best pharmacological properties: high bone + bone lesion uptake up to 90 %, high bone lesions to normal bone ratio up to 16 : 1, fast blood clearance ($T_{1/2, \text{ biol. I.}} = 14 \text{ min, } 60 \%$) and short elimination of the activity being not bound to the bone lesions via the urinary tract (70 % during 2 hrs, 90-94 % during 4 hrs). Due to this favorable properties, beside $^{153}\text{Sm-EDTMP}$, other EDTMP complexes come into the focus of interest.

To ensure an easy and fast "on-the-spot" radiopharmaceutical preparation, kit-formulated EDTMP ("MULTIBONE") was developed and registered. In Hungary, ¹⁵³Sm or ⁹⁰Y labelled EDTMP prepared from MULTIBONE kit are in the clinical routine for several years. Standard activities of 2500 MBq and 400 MBq are used in case of the soft-beta emitter ¹⁵³Sm and the hard beta emitter ⁹⁰Y, respectively. Concerning the palliative efficacy, ⁹⁰Y was very similar to ¹⁵³Sm and the ⁹⁰Y treatment of a few patients resulted in objective metastases remission as well. Despite the high beta energy of ⁹⁰Y (2284 keV), only reversible myelotoxicity with spontaneous recovery was observed as in the case of the well-known ¹⁵³Sm. Recently, preclinical studies of ¹⁷⁷Lu-MULTIBONE were completed and it was found that the calculated absorbed dose in bone lesions caused by 2000 MBq ¹⁷⁷Lu could be significantly higher than that of ¹⁵³Sm or ⁹⁰Y. The forthcoming clinical trial should prove the real efficiacy of ¹⁷⁷Lu-MULTIBONE.

Clinical trial of phase-III of 166 Ho-Phytate suspension injection, including 30 patients with rheumatoid arthritis has also been completed. On-the-spot preparation of 166 Ho-Phytate can be performed by using the Synophyt cold kit and 166 Ho-chloride precursor, resulting in a suspension containing particles within the range of $0.5-1.2~\mu m$. This dimension may ensure homogenous dose distribution in the joint and negligible leakage from the joint, at the same time. Evaluation of the 12 months follow-up after treatment is presented and the data show that the efficacy of 166 Ho is similar or slightly superior to the conventional joint therapy carried out with 90 Y-silicate or 90 Y-citrate.